Перевод: со всех языков на русский

с русского на все языки

расход системы управления

  • 1 pilot system flow

    Универсальный англо-русский словарь > pilot system flow

  • 2 engine

    engine n
    двигатель
    adjust the engine
    регулировать двигатель до заданных параметров
    air-cooled engine
    авиационный двигатель воздушного охлаждения
    all engines speed
    скорость при всех работающих двигателях
    altitude engine
    высотный двигатель
    asymmetric engines power
    асимметричная тяга двигателей
    axial-flow итьбю.gas turbine engine
    газотурбинный двигатель с осевым компрессором
    blow down an engine
    выполнять холодный запуск двигателя
    boost engine
    форсажный двигатель
    bypass engine
    двухконтурный двигатель
    center engine
    средний двигатель
    close down an engine
    останавливать двигатель
    combustion engine
    двигатель внутреннего сгорания
    critical engine failure speed
    скорость при отказе критического двигателя
    cut-off engine operation
    порядок выключения двигателя
    dead engine
    отказавший двигатель
    decelerate an engine
    убирать обороты двигателя
    definitive engine
    окончательный вариант двигателя
    derated engine
    двигатель с пониженной тягой
    digital engine control
    цифровой электронный регулятор режимов работы двигателя
    double-flow engine
    двухконтурный турбореактивный двигатель
    double-row radial engine
    двигатель типа двухрядная звезда
    dual-flow turbojet engine
    двухконтурный турбореактивный двигатель
    duct burning bypass engine
    двухконтурный турбореактивный двигатель с дожиганием топлива во втором контуре
    ducted-fan engine
    двухконтурный турбовентиляторный двигатель
    electronic engine control system
    электронная система управления двигателем
    engine accessory gear box
    кулачковый механизм
    engine acoustic performance
    акустическая характеристика двигателя
    engine adapter
    приставка двигателя
    engine adjustment
    регулировка двигателя
    engine air bleed flange
    фланец отбора воздуха от двигателя
    engine airflow
    расход воздуха через двигатель
    engine altitude performances
    высотные характеристики двигателя
    engine anti-icing system
    противообледенительная система двигателей
    (постоянного действия) engine attach fitting
    узел подвески двигателя
    engine attachment pilot
    шкворень крепления двигателя
    engine backup ring
    опорное кольцо вала двигателя
    engine baffle
    дефлектор двигателя
    engine bay
    двигательный отсек
    engine bellcrank
    качалка системы управления
    engine blast
    струя двигателя
    engine breather system
    система суфлирования двигателя
    engine bulkhead
    перегородка двигателя
    engine check pad
    отбойный щит для опробования двигателей
    engine compartment
    отсек двигателя
    engine control system
    система управления двигателем
    engine cooling
    охлаждение двигателя
    engine core
    внутренний контур двигателя
    engine cowl
    капот двигателя
    engine cowl flap
    створка капота двигателя
    engine cranking
    раскрутка двигателя
    engine critical altitude
    высотность двигателя
    engine cycle
    цикл двигателя
    engine cylinder
    цилиндр двигателя
    engine deicing system
    противообледенительная система двигателей
    (переменного действия) engine detuner
    глушитель двигателя
    engine development
    доводка двигателя
    engine dolly
    тележка для транспортировки двигателей
    engine drive shaft
    главный вал двигателя
    engine dry starting
    холодная прокрутка двигателя
    engine duct treatment
    облицовка каналов двигателя
    engine emission
    эмиссия от двигателей
    engine failure
    отказ двигателя
    engine false starting
    ложный запуск двигателя
    engine fan
    вентилятор двигателя
    engine fire shield
    противопожарный экран двигателя
    engine fuel system
    топливная система двигателя
    engine gasket
    прокладка в системе двигателя
    engine generator cooling
    обдув генератора двигателя
    engine ground test time
    время опробования двигателя на земле
    engine hot starting
    запуск двигателя с забросом температуры
    (выше допустимой) engine impeller
    рабочее колесо двигателя
    engine installation
    установка двигателя
    engine internal fine
    пожар внутри двигателя
    engine jacket
    кожух двигателя
    engine lifting beam
    балка крепления двигателя
    engine lifting device
    приспособление для подъема двигателя
    engine limit governor
    регулятор предельных оборотов двигателя
    engine module
    модуль двигателя
    engine module construction
    модульная конструкция
    engine mount
    рама крепления двигателя
    engine mount beam
    балка крепления двигателя
    engine mounting attachment
    узел крепления двигателя
    engine mounting rails
    рельсы закатки двигателя
    engine mounting trunnion
    цапфа подвески двигателя
    engine mount strut
    стойка подмоторной рамы
    engine nacelle
    гондола двигателя
    engine off
    выключенный двигатель
    engine on
    работающий двигатель
    engine operating time
    наработка двигателя
    engine out
    отказавший двигатель
    engine overspeed
    заброс оборотов двигателя
    engine performances
    характеристики двигателя
    engine pylon
    пилон двигателя
    engine relight
    встречный запуск двигателя
    engine retainer
    проставка двигателя
    engine roll-in fitting
    узел закатки двигателя
    engine rundown
    выбег двигателя
    engine runin time
    время обкатки двигателя
    engine running
    работа двигателя
    engine run-up operation
    опробование двигателя
    engine screen
    фильтр двигателя
    engine seizure
    заклинивание двигателя
    engine setting-up
    отладка двигателя
    engine speed holdup
    зависание оборотов двигателя
    engine speed loss
    падение оборотов двигателя
    engine starter
    стартер двигателя
    engine starter button
    кнопка запуска двигателя
    engine starting
    запуск двигателя
    engine starting procedure
    порядок запуска двигателя
    engine starting system
    система запуска двигателей
    engine start mode
    работа в режиме запуска двигателя
    engine start system
    система запуска двигателей
    engine start valve
    клапан запуска двигателя
    engines trend monitoring
    контроль состояния двигателей
    engine tachometer indicator
    указатель оборотов двигателя
    engine takeoff speed
    число оборотов двигателя на взлетном режиме
    engine tearway
    отрыв двигателя
    engine test base
    испытательная станция
    engine test bench
    стенд для испытания двигателей
    engine throttle
    сектор газа двигателя
    engine throttle control lever
    рычаг раздельного управления газом двигателя
    engine throttle interlock system
    система блокировки управления двигателем
    engine thrust
    тяга двигателя
    engine thrust margin
    избыток тяги двигателя
    engine timing
    регулирование зажигания двигателя
    engine torque
    крутящий момент
    engine torquemeter mechanism
    механизм измерителя крутящего момента на валу двигателя
    engine trouble
    перебои в работе двигателя
    engine vent system
    дренажная система двигателей
    engine vibration
    тряска двигателя
    engine vibration indicating system
    система индикации виброперегрузок двигателя
    engine vibration indicator
    указатель вибрации двигателя
    engine wet starting
    ложный запуск двигателя
    fan-type engine
    турбовентиляторный двигатель
    fire an engine
    запускать двигатель
    free-turbine engine
    двигатель со свободной турбиной
    gas turbine engine
    газотурбинный двигатель
    high bypass ratio engine
    двигатель с высокой степенью двухконтурности
    high compression ratio engine
    двигатель с высокой степенью сжатия
    idling engine
    двигатель на режиме малого газа
    idling engine operation
    работа двигателя на режиме малого газа
    in-board engine
    двигатель, установленный в фюзеляже
    inflight engine test
    испытание двигателя в полете
    install an engine
    устанавливать двигатель
    jet engine
    реактивный двигатель
    left-hand engine
    двигатель с левым вращением ротора
    lift jet engine
    подъемный реактивный двигатель
    light an engine
    запускать двигатель
    longer-lived engine
    двигатель с большим ресурсом
    low bypass ratio engine
    двигатель с низкой степенью двухконтурности
    maximum engine overspeed
    максимально допустимый заброс оборотов двигателя
    modular engine
    модульный двигатель
    modular engine design
    модульная конструкция двигателя
    naccele-mounted engine
    двигатель, установленный в мотогондоле
    on-wing mounted engine
    двигатель, установленный на крыле
    open up an engine
    давать двигателю полный газ
    outboard engine
    двигатель, установленный вне фюзеляжа
    piston engine
    поршневой двигатель
    podded engine
    двигатель, установленный в отдельной гондоле
    port-outer engine
    левый крайний двигатель
    port-side engine
    левый внешний двигатель
    preflight engine run
    предполетное опробование двигателя
    pylon-mounted engine
    двигатель, установленный на пилоне
    quiet engine
    бесшумный двигатель
    radial engine
    звездообразный двигатель
    ramjet engine
    прямоточный воздушно-реактивный двигатель
    reciprocating engine
    поршневой двигатель
    restart the engine in flight
    запускать двигатель в полете
    right-hand engine
    двигатель с правым вращением ротора
    rough engine
    разрегулированный двигатель
    rough engine operations
    перебои в работе двигателя
    run-down engine operation
    выбег двигателя
    run in an engine
    обкатывать двигатель
    run up an engine
    опробовать двигатель
    selection of engine mode
    выбор режима работы двигателя
    self-aspirating engine
    двигатель без наддува
    shut down an engine
    останавливать двигатель
    side engine
    боковой двигатель
    side engine nacelle
    гондола двигателя на пилоне
    simulated engine failure
    имитированный отказ двигателя
    single-rotor engine
    однокаскадный двигатель
    single-shaft turbine engine
    одновальный газотурбинный двигатель
    slow down an engine
    снижать режим работы двигателя
    starboard engine
    правый внешний двигатель
    start an engine
    запускать двигатель
    starting engine
    пусковой двигатель
    starting engine operation
    запуск двигателя
    starting from an operating engine
    перекрестный запуск
    subsonic engine
    дозвуковой двигатель
    three-flow turbojet engine
    трехконтурный турбореактивный двигатель
    three-pointer engine gage
    трехстрелочный указатель двигателя
    three-pointer engine gage unit
    трехстрелочный указатель
    three-rotor turbofan engine
    трехвальный турбовентиляторный двигатель
    turbine engine
    газотурбинный двигатель
    turbofan engine
    турбовентиляторный двигатель
    turbojet engine
    турбореактивный двигатель
    turboprop engine
    турбовинтовой двигатель
    turboshaft engine
    турбовальный двигатель
    two-rotor engine
    двухроторный двигатель
    two-shaft turbine engine
    двухвальный газотурбинный двигатель
    two-spool engine
    двухкаскадный двигатель
    under any kind of engine failure
    при любом отказе двигателя
    underwing engine
    подкрыльевой двигатель
    unreverse an engine
    выводить двигатель из режима реверса
    uprated engine
    форсированный двигатель
    warmed-up engine
    прогретый двигатель
    warm up an engine
    прогревать двигатель
    water-cooled engine
    двигатель водяного охлаждения
    winding engine
    лебедка
    wing engine
    крыльевой двигатель
    with an engine suddenly failed
    при внезапном отказе двигателя

    English-Russian aviation dictionary > engine

  • 3 force

    сила; усилие; см. тж. effort; pl. ( войсковые) соединения или части; ( вооружённые) силы; вынуждать

    Air Fleet Marine forces, Atlantic — авиация морской пехоты Атлантического флота ВМС США

    Air Material force, Pacific area — армия материально-технического обеспечения ВВС США в тихоокеанской зоне

    air-combat forces, naval aviation — боевые силы авиации ВМС

    Allied Air forces, Central Europe — объединённые ВВС НАТО на центрально-европейском театре

    Allied Air forces, Eastern Atlantic area — объединённые ВВС НАТО в восточной части Атлантики

    Allied Air forces, Northern Europe — объединённые ВВС НАТО на североевропейском театре

    Allied Air forces, Southern Europe — объединённые ВВС НАТО на южноевропейском театре

    composite air strike force — смешанная оперативная ударная группа [соединение] ВВС

    control force per unit of normal acceleration — расход усилий (на органах управления) на единицу нормальной перегрузки [нормального ускорения]

    control system breakout force — сила [усилие] страгивания системы управления, усилие для преодоления трения покоя в проводке управления

    force due to Q — усилие, создаваемое скоростным напором

    Middle East Air forceБр. ВВС на Среднем Востоке

    Royal Auxiliary Air forceБр. вспомогательные ВВС

    stick force per «g» — градиент усилий на ручке по перегрузке

    wheel brake decelerating force — сила торможения, развиваемая колёсами

    Englsh-Russian aviation and space dictionary > force

  • 4 ratio

    airfoil thickness ratio
    относительная толщина профиля
    aspect ratio
    относительное удлинение
    bearing ratio
    показатель плотности грунта
    bypass ratio
    степень двухконтурности
    carrier-to-noise ratio
    степень помех по отношению к несущей частоте
    compressor pressure ratio
    степень повышения давления компрессором
    control-to-surface gear ratio
    передаточное число системы управления рулем
    cost-benefit ratio
    степень рентабельности
    filling ratio
    степень наполнения
    fineness ratio
    аэродинамическое качество
    gear ratio
    степень редукции
    high bypass ratio engine
    двигатель с высокой степенью двухконтурности
    high compression ratio engine
    двигатель с высокой степенью сжатия
    low bypass ratio engine
    двигатель с низкой степенью двухконтурности
    mass flow ratio
    массовый расход
    mixture ratio
    качество рабочей смеси
    moderation ratio
    коэффициент замедления
    net profit ratio
    степень рентабельности
    nozzle exhaust pressure ratio
    степень перепада давления на срезе сопла
    operating ratio
    степень рентабельности
    pitch-diameter ratio
    соотношение шага и диаметра
    pressure ratio
    степень сжатия
    propeller solidity ratio
    коэффициент заполнения воздушного винта
    reduction ratio
    передаточное число
    signal-to-noise ratio
    коэффициент помех
    slip ratio
    коэффициент скольжения
    uplift ratio
    степень загрузки
    useful-to-takeoff load ratio
    весовая отдача по полезной нагрузке
    wing aspect ratio
    относительное удлинение крыла
    wing taper ratio
    относительное сужение крыла

    English-Russian aviation dictionary > ratio

  • 5 système de conditionnement d'air

    1. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > système de conditionnement d'air

  • 6 Klimaanlage

    1. система кондиционирования воздуха
    2. кондиционирование воздуха (в туристических услугах)
    3. кондиционер воздуха в помещении
    4. камера кондиционирования

     

    камера кондиционирования
    Ндп климатизационная камера
    Камера с установленными температурой и влажностью с целью стабилизации физико-механических показателей выдерживаемых в них древесностружечных плит.
    [ ГОСТ 19506-74]

    Недопустимые, нерекомендуемые

    Тематики

    • плиты древесноволокн. и древесностружеч.

    EN

    DE

     

    кондиционер воздуха в помещении
    Ндп. климатизер
    Агрегат для кондиционирования воздуха в помещении.
    Примечание. Кондиционер воздуха, работающий на наружном воздухе, называется прямоточным, на внутреннем воздухе - рециркуляционным, на смеси наружного и внутреннего воздуха - с рециркуляцией.
    [ ГОСТ 22270-76]

    кондиционер
    Агрегат, предназначенный для кондиционирования воздуха в помещении
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

     

    кондиционирование воздуха
    Искусственная система индивидуальной или централизованной регулировки температуры воздуха, в последнем случае регулировка температуры недоступна для проживающих.
    Примечание
    В последнем случае в номерах отсутствует термостат для индивидуальной регулировки температуры воздуха.
    [ ГОСТ Р 53423-2009]


    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Klimaanlage

  • 7 air conditioning system

    1. система кондиционирования воздуха (спорт)
    2. система кондиционирования воздуха

     

    система кондиционирования воздуха
    Совокупность воздухотехнического оборудования, предназначенная для кондиционирования воздуха в помещениях
    [ ГОСТ 22270-76]

    система кондиционирования воздуха

    Совокупность технических средств для обработки и распределения воздуха, а также автоматического регулирования его параметров с дистанционным управлением всеми процессами
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    система кондиционирования воздуха

    Комбинация всех компонент, необходимых для обработки воздуха, в процессе которой осуществляется контроль или понижение температуры, возможно, в комбинации с контролем вентиляции, влажности и чистоты воздуха.
    [ДИРЕКТИВА 2002/91/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕТА И СОВЕТА от 16 декабря 2002 г. по энергетическим характеристикам зданий]


    КЛАССИФИКАЦИЯ



    Классификация систем кондиционирования воздуха

    М. Г. Тарабанов, директор НИЦ «ИНВЕНТ», канд. техн. наук, вице-президент НП «АВОК», лауреат премии НП «АВОК» «Медаль имени И. Ф. Ливчака», «Медаль имени В. Н. Богословского», otvet@abok.ru

    Общие положения

    Краткий, но достаточно полный обзор истории развития кондиционирования воздуха представлен в работе А. И. Липы [1], поэтому отметим только несколько моментов. Родоначальником техники кондиционирования воздуха в ее современном понимании считается американский инженер Виллис Хэвилэнд Кэрриер (Willis Haviland Carrier), который в 1902 году в Нью-Йорке в Бруклинской типографии применил поверхностный водяной воздухоохладитель с вентилятором для получения летом в помещении температуры +26,5 °C и относительной влажности 55 %. Вода охлаждалась в аммиачной холодильной машине. Зимой для увлажнения внутреннего воздуха до 55 % использовался водяной пар от бойлера.
    Термин «кондиционирование воздуха» был предложен в 1906 году Стюартом Уорреном Крамером (Stuart Warren Cramer).
    В отечественной практике некоторые авторы применяют термин «кондиционирование микроклимата». Заметим, что этот термин отличается от «кондиционирования воздуха», так как включает в себя дополнительные факторы, не связанные с состоянием воздушной среды в помещении (шум, инсоляция и др.).
    К сожалению, несмотря на солидный возраст термин «кондиционирование воздуха» не получил четкого определения в современных отечественных нормативных документах. Для устранения этого пробела сформулируем: «Кондиционирование воздуха – это создание и автоматическое поддержание в обслуживаемом помещении или технологическом объеме требуемых параметров и качества воздуха независимо от внутренних возмущений и внешних воздействий». К параметрам воздуха относятся: температура, относительная влажность или влагосодержание и подвижность. Качество воздуха включает в себя газовый состав, запыленность, запахи, аэроионный состав, т. е. более широкий круг показателей, чем термин «чистота», используемый в [2].
    Комплекс оборудования, элементов и устройств, с помощью которых обеспечивается кондиционирование воздуха в обслуживаемых помещениях, называется системой кондиционирования воздуха (СКВ).
    Приведенное выше определение системы кондиционирования воздуха по смыслу полностью совпадает с определением ASHRAE: «”air-conditioning system” – комплекс оборудования для одновременной обработки и регулирования температуры, влажности, чистоты воздуха и распределения последнего в соответствии с заданными требованиями» [3].
    Общепринятого, устоявшегося мнения, что следует включать в состав СКВ, к сожалению, нет.
    Так, например, по мнению О. Я. Кокорина [4] СКВ может включать в себя:

    • установку кондиционирования воздуха (УКВ), обеспечивающую необходимые кондиции воздушной среды по тепловлажностным качествам, чистоте, газовому составу и наличию запахов;
    • средства автоматического регулирования и контроля за приготовлением воздуха нужных кондиций в УКВ, а также для поддержания в обслуживаемом помещении или сооружении постоянства заданных кондиций воздуха;
    • устройства для транспортирования и распределения кондиционированного воздуха;
    • устройства для транспортирования и удаления загрязненного внутреннего воздуха;
    • устройства для глушения шума, вызываемого работой элементов СКВ;
    • устройства для приготовления и транспортирования источников энергии, необходимых для работы аппаратов в СКВ.

    В зависимости от конкретных условий некоторые составные части СКВ могут отсутствовать.
    Однако согласиться с отдельными пунктами предложенного состава СКВ нельзя, так как если следовать логике автора [4], то в состав СКВ должны войти и системы оборотного водоснабжения, водопровода и канализации, ИТП и трансформаторные, которые также необходимы для работы аппаратов в СКВ.
    Достаточно полное представление о структуре СКВ дает разработанная во ВНИИкондиционере «Блок-схема системы кондиционирования воздуха» (рис. 1) [5].

    4804

    Включенные в эту блок-схему подсистемы обработки воздуха по своему функциональному назначению делятся на блоки:

    • основной обработки и перемещения: Б1.1 – приемный, Б1.8 – очистки, Б1.2 – сухого (первого) подогрева, Б1.3 – охлаждения, Б1.6 – тепловлажностной обработки, Б1.9 – перемещения приточного воздуха;
    • дополнительной обработки и перемещения: Б2.1 – утилизации, Б2.2 – предварительного подогрева, Б2.3 – доводки общей (второй подогрев, дополнительное охлаждение), Б2.4 – зональной доводки, Б2.5 – местной доводки (эжекционные доводчики и др.), Б2.7 – шумоглушения, Б2.8 – перемещения рециркуляционного воздуха;
    • специальной обработки: Б5.5 – тонкой очистки;
    • воздушной сети: Б4.2 – воздухораспределительных устройств, Б4.3 – вытяжных устройств, Б4.5 – воздуховодов;
    • автоматизации – арматуры – Б3.1.

    Помимо этих блоков в СКВ может входить система холодоснабжения (снабжение электроэнергией и теплом осуществляется, как правило, централизованно). Ее включение в состав СКВ, видимо, относится к автономным кондиционерам (см. далее).
    Для определения состава оборудования, входящего в СКВ, и границ раздела целесообразно воспользоваться делением на разделы, которое сложилось в практике проектирования.
    В частности, при выполнении проектов кондиционирования воздуха достаточно серьезных объектов обычно выделяют в самостоятельные разделы: теплоснабжение СКВ; холодоснабжение и холодильные центры; электроснабжение; автоматизация; водоснабжение, в том числе оборотное, канализация и дренаж.
    Причем по каждому из разделов составляют свою спецификацию, в которую включено оборудование, материалы и арматура, относящиеся к своему конкретному разделу.
    Таким образом, в состав СКВ следует включить:

    • УКВ, предназначенную для очистки и тепловлажностной обработки и получения необходимого качества воздуха и его транспортировки по сети воздуховодов до обслуживаемого помещения или технического объема;
    • сеть приточных воздуховодов с воздухораспределителями, клапанами и регулирующими устройствами;
    • вытяжной вентилятор и сеть вытяжных и рециркуляционных воздуховодов с сетевым оборудованием;
    • сеть фреоновых трубопроводов для сплит-систем и VRV-систем с кабелями связи наружных блоков с внутренними;
    • фэнкойлы, эжекционные доводчики, моноблоки, холодные и теплые потолки и балки и др. доводчики для охлаждения и (или) нагревания непосредственно внутреннего воздуха;
    • оборудование для утилизации теплоты и холода;
    • дополнительные воздушные фильтры, шумоглушители и другие элементы.

    И даже систему автоматики, входящую в СКВ как бы по определению, целесообразно выделить отдельно, так как ее проектируют инженеры другой специальности, хотя и по заданию так называемых технологов СКВ.
    Границей СКВ и систем теплохолодоснабжения можно считать узлы регулирования, а границей электроснабжения и автоматики – электрические щиты и щиты управления, которые в последнее время очень часто делают совмещенными.

    Классификация систем кондиционирования воздуха

    Проблемам классификации СКВ в большей или меньшей степени уделяли внимание практически все авторы учебников и монографий по кондиционированию воздуха. Вот что написал по этому вопросу известный специалист, доктор техн. наук А. А. Рымкевич [6]: «Анализ иерархической структуры самих СКВ прежде всего требует их классификации и только затем их декомпозиции на подсистемы. …Однако для СКВ, решения которых базируются на учете большого числа данных, разработать такую классификацию всегда сложно. Не случайно в литературе нет единого мнения по данному вопросу, и поэтому многие известные авторы… предложили различные методы классификации».
    Предложенная А. А. Рымкеви-чем концепция выбора признаков классификации СКВ сформулирована очень точно, и с ней нельзя не согласиться. Проблема состоит в том, как этой концепцией воспользоваться и какие признаки считать определяющими, а какие вторичными, и как точно сформулировать эти признаки.
    В начале восьмидесятых годов прошлого века наиболее полная классификация СКВ была предложена в работе Б. В. Баркалова и Е. Е. Карписа [7].
    Основные признаки этой классификации с некоторыми дополнениями использованы и в недавно изданной монографии А. Г. Сотникова [8] и в других работах, однако некоторые формулировки отдельных признаков требуют уточнения и корректировки.
    Например, для опытных специалистов не составит труда разделить СКВ на центральные и местные, посмотрим, как признак такого деления сформулирован разными авторами.
    Б. В. Баркалов, Е. Е. Карпис пишут [7]: «В зависимости от расположения кондиционеров по отношению к обслуживаемым помеще-ниям СКВ делятся на центральные и местные». А. Г. Сотников [8] считает необходимым дополнить: «Деление на местные и центральные СКВ учитывает как место установки кондиционера, так и группировку помещений по системам», а О. Я. Кокорин уточняет: «По характеру связи с обслуживаемым помещением можно подразделить СКВ на три вида: центральные, местные и центрально-местные. Центральные СКВ характеризуются расположением УКВ в удалении от обслуживаемых объектов и наличием приточных воздуховодов значительной протяженности. Местные СКВ характеризуются расположением УКВ в самом обслуживаемом помещении или в непосредственной близости от него, при отсутствии (или наличии весьма коротких) приточных воздуховодов. Центрально-местные СКВ характеризуются как наличием УКВ в удалении от обслуживаемых объектов, так и местных УКВ, располагаемых в самих помещениях или в непосредственной близости от них».
    Трудно понять, что имеется в виду под группировкой помещений по системам и что считается протяженными или весьма короткими воздуховодами. Например, кондиционеры, обслуживающие текстильные цеха на Волжском заводе синтетического волокна, имеют производительность по воздуху до 240 м3/ч и расположены рядом с обслуживаемыми помещениями, то есть непосредственно за стенами, но никто из указанных выше авторов не отнес бы их к местным системам.
    Несколько иной признак клас-сификации предложил Е. В. Стефанов [9]: «… по степени централизации – на системы центральные, обслуживающие из одного центра несколько помещений, и местные, устраиваемые для отдельных помещений и располагающиеся, как правило, в самих обслуживаемых помещениях».
    К сожалению, и эта формулировка является нечеткой, так как одно большое помещение могут обслуживать несколько центральных кондиционеров, а группу небольших помещений – один местный кондиционер.
    Фактически в отечественной практике негласно действовал совсем другой признак классификации: все кондиционеры, выпускавшиеся Харьковским заводом «Кондиционер», кроме шкафных, считались центральными, а все кондиционеры, выпускавшиеся Домодедовским заводом «Кондиционер», кроме горизонтальных производительностью 10 и 20 тыс. м3/ч, – относились к местным.
    Конечно, сегодня такое деление выглядит смешным, а между тем в нем был определенный здравый смысл.
    Известно, что в местных системах используются готовые агрегаты полной заводской сборки обычно шкафного типа со стандартным набором тепломассообменного оборудования с уже готовыми, заданными заранее техническими характеристиками, поэтому местные УКВ не проектируют, а подбирают для конкретного обслуживаемого помещения или группы небольших однотипных помещений.
    Максимальная производительность местных систем по воздуху обычно не превышает 20–30 тыс. м3/ч.
    Центральные кондиционеры могут быть также полной заводской сборки или собираются на месте монтажа, причем технические характеристики всех элементов, включая воздушные фильтры, вентиляторы и тепломассообменное оборудование, задаются производителями в очень широких пределах, поэтому такие кондиционеры не подбирают, а проектируют, а затем изготавливают в соответствии с бланком-заказом для конкретного объекта.
    Обычно центральные кондиционеры собирают в виде горизонтальных блоков, причем производительность таких кондиционеров по воздуху значительно больше, чем у местных и достигает 100–250 тыс. м3/ч у разных фирм-производителей.
    Очевидно, что отмеченные признаки относятся к УКВ, но их можно использовать и для классификации СКВ, например, СКВ с центральной УКВ – центральная СКВ, а с местной УКВ – местная СКВ. Такой подход не исключает полностью признаки, предложенные другими авторами, а дополняет их, исключая некоторые неопределенности, типа протяженности воздуховодов и др.
    Для дальнейшей классификации СКВ рассмотрим схему ее функционирования.
    На параметры внутреннего воздуха в обслуживаемом помещении или технологическом объеме оказывают воздействие внутренние возмущения, то есть изменяющиеся тепло- и влаговыделения, а также внешние факторы, например, изменение температуры и влагосодержания наружного воздуха, воздействие на остекленный фасад прямой солнечной радиации в разное время суток и др.
    Задача СКВ состоит в том, чтобы улавливать и своевременно устранять последствия этих возмущений и воздействий для сохранения параметров внутреннего воздуха в заданных пределах, используя систему автоматического регулирования и необходимый набор оборудования (воздухоохладители, воздухонагреватели, увлажнители и др.), а также источники теплоты и холода.
    Поддерживать требуемые параметры внутреннего воздуха можно изменяя параметры или расход приточного воздуха, подаваемого в помещение извне, или с помощью аппаратов, установленных непосредственно в помещении, так называемых доводчиков.
    Сегодня в качестве доводчиков используют внутренние блоки сплит-систем и VRV-систем, фэнкойлы, моноблоки, охлаждаемые потолки и балки и другие элементы.
    К сожалению, в классификации [7] вместо понятия «доводчики» используется понятие «водовоздушные СКВ», а в классификации [8] дополнительно вводится термин «водо- и фреоновоздушная СКВ». С подобными предложениями нельзя согласиться в принципе, так как их авторы вольно или невольно присваивают сплит-системам или фэнкойлам статус систем кондиционирования воздуха, которыми они не являются и, естественно, не могут входить в классификацию СКВ, поскольку являются всего лишь местными охладителями или нагревателями, то есть не более чем доводчиками.
    Справедливости ради отметим, что Б. В. Баркалов начинает описание центральных водовоздушных систем очень точной фразой: «В каждое помещение вводится наружный воздух, приготовленный в центральном кондиционере. Перед выпуском в помещение он смешивается с воздухом данного помещения, предварительно охлажденным или нагретым в теплообменниках кондиционеров?доводчиков, снабжаемых холодной и горячей водой». Приведенная цитата показывает, что автор хорошо понимает неопределенность предложенного им признака классификации и поэтому сразу поясняет, что он имеет в виду под центральными водовоздушными системами.
    Системы без доводчиков могут быть прямоточными, когда в помещение подается обработанный наружный воздух, и с рециркуляцией, когда к наружному воздуху подмешивают воздух, забираемый из помещения. Кроме того, технологические СКВ, обслуживающие помещения или аппараты без пребывания людей, могут работать без подачи наружного воздуха со 100 % рециркуляцией. В зависимости от алгоритма работы СКВ различают системы с постоянной рециркуляцией, в которых соотношение количества наружного и рециркуляционного воздуха во время работы не изменяется, и СКВ с переменной рециркуляцией, в которых количество наружного воздуха может изменяться от 100 % до некоторого нормируемого минимального уровня.
    Кроме того, системы с рециркуляцией могут быть одновентиляторными и двухвентиляторными. В первых системах подача приточного воздуха в помещение, а также забор наружного и рециркуляционного воздуха осуществляется приточным вентилятором УКВ. Во втором случае для удаления воздуха из помещения и подачи его на рециркуляцию или на выброс применяют дополнительный вытяжной вентилятор.
    Независимо от схемы компоновки и устройства отдельных элементов СКВ подразделяют также по их назначению. Многие авторы делят СКВ на комфортные, технологические и комфортно-технологические. Более удачной и полной представляется классификация СКВ по назначению на эргономической основе, разработанная ВНИИкондиционером [5].
    Определено, что СКВ могут выполнять одну из трех функций обслуживания: машин; машин + людей; людей.
    1-я группа (символ «машина») определена как технологические СКВ. СКВ этой группы обслуживают технологические аппараты, камеры, боксы, машины и т. п., то есть применяются в тех случаях, когда условия воздушной среды диктуются обеспечением работоспособности технологического оборудования. При этом параметры воздушной среды могут отличаться от тех, которые определяются санитарно-гигиеническими нормами.
    1-я группа имеет две модификации:

    • Подгруппа 1–1 включает в себя кондиционируемые объекты, полностью исключающие возможность пребывания в них человека, то есть это системы технологического охлаждения, обдува электронных блоков вычислительных машин, шахты обдува волокна прядильных машин и т. п.
    • Подгруппа 1–2 включает в себя кондиционируемые объекты: технологические аппараты (машины, камеры, боксы) и помещения с особыми параметрами воздушной среды (калориметрического, экологического и другого назначения), в которых человек отсутствует или находится эпизодически (для снятия показаний приборов, изменения режима работы и т. д.).

    Если для группы 1–1 отсутствуют какие-либо ограничения по параметрам и составу воздушной среды, то для объектов подгруппы 1–2 газовый состав воздушной среды должен находиться в пределах, установленных ГОСТ.
    2-я группа (символ «машина + человек») определена как технологически комфортные СКВ. СКВ этой группы обслуживают производственные помещения, в которых длительно пребывают люди.
    2-я группа имеет три модификации:

    • Подгруппа 2–1. Технологически комфортные СКВ обеспечивают условия нормального осуществления технологических процессов как для производств, в которых затруднено или практически невозможно получение продукции без поддержания определенных параметров воздушной среды, так и для производств, в которых колебания параметров воздуха существенно влияют на качество продукции и величину брака.
    • Для этих помещений СКВ устраивается в первую (и основную) очередь по требованиям технологии, однако в связи с наличием в этих помещениях людей, параметры КВ устанавливают с учетом требований санитарно-гигиенических норм.
    • Подгруппа 2–2. СКВ создаются для исключения дискомфортных условий труда при тяжелых режимах работы людей (кабины крановщиков мостовых кранов металлургических заводов и ТЭЦ, кабины строительно-дорожных машин и т. д.). Производственные или экономические аспекты для этих установок имеют второстепенное значение.
    • Подгруппа 2–3. СКВ обеспечивают в производственных помещениях комфортные условия труда, способствующие повышению производительности труда, улучшению проведения основных технологических режимов, снижению заболеваемости, уменьшению эксплуатационных затрат и т. п.

    3-я группа (символ «люди») определена как комфортные СКВ, обеспечивающие санитарно-гигиенические условия труда, отдыха или иного пребывания людей в помещениях гражданских зданий, то есть вне промышленного производства.
    Эта группа имеет две модификации:

    • Подгруппа 3–1. СКВ обслуживают помещения общественных зданий, в которых для одной части людей пребывание в них кратковременно (например, покупатели в универмаге), а для другой – длительно (например, продавцы в этом же универмаге).
    • Подгруппа 3–2. СКВ обеспечивают оптимальные условия пребывания людей в жилых помещениях.

    В классификацию ВНИИконди-ционера необходимо ввести еще одну группу – медицинские СКВ. Очевидно, что СКВ, обслуживающие операционные, реанимационные или палаты интенсивной терапии, никак нельзя считать комфортными, а чтобы отнести их к технологическим, надо в качестве «машины» рассматривать самого человека, что просто глупо.
    Медицинские СКВ должны иметь две подгруппы:

    • Подгруппа 4–1. СКВ обслуживают операционные, реанимационные и т. п. помещения.
    • Подгруппа 4–2. СКВ обеспечивают требуемые параметры воздуха в палатах, кабинетах врачей, процедурных и т. п.

     

    4805

    Для завершения классификации СКВ рассмотрим еще несколько признаков.
    По типу системы холодоснабжения различают автономные и неавтономные СКВ. В автономных источник холода встроен в кондиционер, в неавтономных – источником холода является отдельный холодильный центр. Кроме того, в автономных кондиционерах в воздухоохладитель может подаваться кипящий хладон или жидкий промежуточный хладоноситель (холодная вода, растворы). Заметим, что на многих объектах мы использовали схему с подачей хладона в воздухоохладитель центрального кондиционера от расположенной рядом холодильной машины или внешнего блока VRV.
    По способу компенсации изменяющихся тепловых и (или) влажностных возмущений в обслуживаемом помещении различают СКВ с постоянным расходом воздуха (CAV) – системы, в которых внутренние параметры поддерживают изменяя температуру и влажность приточного воздуха (качественное регулирование), и системы с переменным расходом воздуха (VAV) – системы с количественным регулированием.
    По числу воздуховодов для подачи кондиционированного воздуха в помещенияСКВ делятся на одноканальные и двухканальные, при этом приточный воздух в каждом канале имеет разную температуру и влажность, что позволяет, изменяя соотношение приточного воздуха, подаваемого через каждый канал, поддерживать требуемые параметры в обслуживаемом помещении.
    По числу точек стабилизации одноименного параметра (t; φ)в большом помещении или группе небольших помещений различают одно- и многозональные СКВ.
    –это СКВ с местными доводчиками. В этих СКВ центральная или местная УКВ подает в помещение санитарную норму наружного воздуха, даже не обязательно обработанного, а местные доводчики обеспечивают поддержание в помещении требуемых параметров воздуха (температуры, относительной влажности и подвижности).
    Сегодня в качестве местных доводчиков применяют: внутренние блоки сплит-систем или VRV-систем; фэнкойлы (двух- или четырехтрубные); моноблоки (напольные, потолочные или настенные); эжекционные доводчики; местные увлажнители воздуха; охлаждаемые и нагреваемые потолки; охлаждающие балки (пассивные и активированные).
    Все указанные доводчики сами по себе не являются кондиционерами, хотя их и называют так продавцы оборудования.
    Известно, что некоторые фирмы работают над созданием, например, фэнкойлов или сплит-систем, подающих в помещение наружный воздух. Но, если это и произойдет в массовом масштабе, то ничего страшного с классификацией не случится, просто это оборудование получит статус местных кондиционеров.
    Блок-схема рассмотренной классификации СКВ приведена на рис. 2.
    Помимо рассмотренных признаков в схему на рис. 2 включен еще один: наличие утилизаторов теплоты и холода, которые могут быть как в центральных, так и в местных СКВ. Причем необходимо различать системы утилизации типа воздух-воздух, к которым относятся схемы с промежуточным теплоносителем, с пластинчатыми теплообменниками* и с регенеративными вращающимися и переключаемыми теплообменниками, а также системы утилизации теплоты оборотной воды и теплоты обратного теплоносителя систем централизованного теплоснабжения и систем технологического жидкостного охлаждения.

    Литература

    1. Липа А. И. Кондиционирование воздуха. Основы теории. Совре-менные технологии обработки воздуха. – Одесса: Издательство ВМВ, 2010.
    2. СНиП 41–01–2003. Отопление, вентиляция, кондиционирование. М.: Госстрой России. – 2004.
    3. Англо-русский терминологический словарь по отоплению, вентиляции, кондиционированию воздуха и охлаждению. М.: Изд-во «АВОК-ПРЕСС», 2002.
    4. Кокорин О. Я. Энергосберегаю-щие системы кондиционирования воздуха. ООО «ЛЭС». – М., 2007.
    5. Кондиционеры. Каталог-спра-воч-ник ЦНИИТЭстроймаш. – М., 1981.
    6. Рымкевич А. А. Системный анализ оптимизации общеобменной вентиляции и кондиционирования воздуха. Изд. 1. – М.: Стройиздат, 1990.
    7. Баркалов Б. В., Карпис Е. Е. Кондиционирование воздуха в промышленных, общественных и жилых зданиях. Изд. 2. – М.: Стройиздат, 1982.
    8. Сотников А. Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Т. 1. ООО «АТ». – С.-Петербург, 2005.
    9. Стефанов Е. В. Вентиляция и кондиционирование воздуха. – С.-Петербург: Изд-во «АВОК-Северо-Запад», 2005.

    [ http://www.abok.ru/for_spec/articles.php?nid=5029]

    Тематики

    EN

    DE

    FR

     

    система кондиционирования воздуха
    СКВ

    Система, позволяющая контролировать температуру, а иногда влажность и чистоту воздуха в помещении или транспортном средстве.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    air conditioning system
    ACS
    System for controlling temperature and sometimes humidity and purity of the air indoor or in a vehicle.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air conditioning system

  • 8 fuel

    fuel n
    топливо
    aft fuel pump
    задний топливный насос
    aft fuel tank
    задний топливный бак
    aircraft fuel consumption
    расход топлива воздушным судном
    aircraft fuel quantity
    запас топлива воздушного судна
    aircraft fuel supply
    подача топлива в систему воздушного судна
    airfield fuel valve
    аэродромный штуцер заправки топливом
    alternate fuel tank
    промежуточный расходный бак перекачки топлива
    atomize fuel
    распыливать топливо
    aviation fuel
    авиационное топливо
    aviation mixed fuel
    авиационная топливная смесь
    aviation turbine fuel
    авиационное топливо для турбореактивных двигателей
    bag fuel tank
    мягкий топливный бак
    block fuel
    запас топлива на рейс
    boost fuel
    подкачивать топливо
    bubble-free fuel
    топливо без воздушных пузырьков
    bypass fuel back
    сбрасывать топливо на вход
    bypass fuel line
    линия перепуска топлива
    climb fuel
    топливо расходуемое на выбор высоты
    conserve fuel
    экономить топливо
    continue operating on the fuel reserve
    продолжать полет на аэронавигационном запасе топлива
    controlling fuel
    командное топливо
    critical fuel reserve
    критический запас топлива
    drainable fuel
    сливаемое топливо
    dump fuel
    сливать топливо
    emulsified fuel
    эмульсированное топливо
    engine-driven fuel boost pump
    двигательный насос подкачки топлива
    engine fuel system
    топливная система двигателя
    en-route fuel reserve
    аэронавигационный запас топлива
    even use of fuel
    равномерная выработка топлива
    external fuel tank
    подвесной топливный бак
    feed fuel
    подводить топливо
    ferry fuel tank
    дополнительный топливный бак
    first fuel consumed tank
    бак первой очереди расхода топлива
    flexible fuel tank
    мягкий топливный бак
    float fuel gage
    поплавковый топливомер
    float-type fueling valve
    поплавковый клапан заправки топливом
    fossil fuel
    органическое топливо
    fuel accumulator
    топливный аккумулятор
    fuel accumulator pressurization
    наддув топливного аккумулятора
    fuel atomization
    распыливание топлива
    fuel atomizer
    топливная форсунка
    fuel availability
    запас топлива
    fuel backup pump
    топливный насос низкого давления
    fuel booster pump
    насос подкачки топлива
    fuel bypass back
    сброс топлива
    fuel bypass pipe
    трубка отсечного топлива
    fuel call
    топливный отсек
    fuel capacity
    запас топлива
    fuel connection
    штуцер топливной системы
    fuel consumed counter
    счетчик расхода топлива
    fuel consumed tank
    расходный топливный бак
    fuel consumption rate
    уровень расхода топлива
    fuel control panel
    топливный щиток
    fuel control unit
    командно-топливный агрегат
    fuel crossfeed line
    магистраль кольцевания топливных баков
    fuel cross-feed system
    система кольцевания топливных баков
    fuel depletion
    полная выработка топлива
    fuel depot
    топливный склад
    fuel detonation
    детонация топлива
    fuel dip stick
    топливомерный щуп
    fuel dip system
    система снижения подачи топлива
    fuel discharge
    слив топлива
    fuel dispenser
    топливозаправщик
    fuel distribution
    распределение топлива
    fuel distributor
    распределитель топлива
    fuel draining
    слив топлива
    fuel dumping
    аварийный слив топлива
    fuel dumping rate
    скорость аварийного слива топлива
    fuel dump system
    система аварийного слива топлива
    fuel efficiency
    топливная эффективность
    fuel efficient altitude
    высота оптимального расхода топлива
    fuel endurance
    продолжительность по запасу топлива
    fuel enrichment system
    система обогащения топливной смеси
    fuel farm
    топливохранилище
    fuel feed system
    система подачи топлива
    fuel filling
    заправка топливом
    fuel filter
    топливный фильтр
    fuel fire shutoff valve
    противопожарный отсечный клапан топлива
    fuel flow
    1. расход топлива
    2. регулирование расхода топлива fuel flow indicator
    указатель мгновенного расхода топлива
    fuel flow meter
    топливный расходомер
    fuel flowmeter system
    система измерения расхода топлива
    fuel flow transmitter
    датчик расхода топлива
    fuel governor
    регулятор расхода топлива
    fuel grade
    сорт топлива
    fuel gravity system
    система подачи топлива самотеком
    fuel gravity transfer tube
    труба перелива топлива
    fuel heater
    подогреватель топлива
    fuel indicating system
    система контроля количества и расхода топлива
    fuel injection control
    регулирование непосредственного впрыска топлива
    fuel injection nozzle
    форсунка непосредственного впрыска
    fuel injection system
    система впрыска топлива
    fuel jet
    топливный жиклер
    fuel jettisoning system
    система аварийного слива топлива
    (fuel jettisonning system) fuel knock
    детонация топлива
    fuel level gage
    топливомер
    fuel line
    топливопровод
    fuel load
    запас топлива
    fuel low level switch
    сигнализатор остатка топлива
    (в баке) fuel management schedule
    порядок выработки топлива
    fuel management system
    система управления подачей топлива
    fuel manifold drain system
    система дренажа топливных коллекторов
    fuel metering
    регулирование подачи топлива
    fuel metering unit
    агрегат дозировки топлива
    fuel mixture indicator
    указатель качества топливной смеси
    fuel nozzle
    топливная форсунка
    fuel nozzle ferrule
    втулка для установки форсунки
    fuel nozzles group
    блок топливных форсунок
    fuel off-load rate
    скорость слива топлива
    fuel outlet hose
    шланг отвода топлива
    fuel outlet pipe
    патрубок забора топлива
    fuel pipeline
    топливный трубопровод
    fuel preheat system
    система подогрева топлива
    (на входе в двигатель) fuel pressure gage
    манометр давления топлива
    fuel pressure indicator
    указатель давления топлива
    fuel pressure warning light
    сигнальная лампочка давления топлива
    fuel property
    характеристика топлива
    fuel pump
    топливный насос
    fuel quantity gage
    датчик топливомера
    fuel quantity indicator
    указатель количества топлива
    fuel quantity indicator selector switch
    переключатель топливомера
    fuel quantity meter
    топливомер
    fuel quantity transmitter
    датчик топливомера
    fuel quantity transmitter hatch
    люк для крепления датчика топливомера
    fuel range
    запас топлива
    fuel range estimating
    расчет запаса топлива
    fuel remaining counter
    счетчик остатка топлива
    fuel remaining indicator
    указатель остатка топлива
    fuel reservoir
    расходный отсек топливного бака
    fuel runout
    полная выработка топлива
    fuel savings procedure
    схема полета с минимальным расходом топлива
    fuel screen
    топливный фильтр
    fuel selector
    переключатель топливных баков
    fuel servicing truck
    топливозаправщик
    fuel shutoff valve lever
    рычаг стоп-крана подачи топлива
    fuel spill
    утечка топлива
    fuel spray pattern
    угол распыла топлива
    fuel starvation
    нехватка топлива
    fuel storage depot
    топливохранилище
    fuel storage system
    система размещения топливных баков
    fuel supply pressure
    давление в системе подачи топлива
    fuel supply system
    система подачи топлива
    fuel system
    топливная система
    fuel tank
    1. дренажное отверстие топливного бака
    2. топливный бак fuel tankage
    емкость топливных баков
    fuel tank drainage
    дренаж топливного бака
    fuel tanker
    топливозаправщик
    fuel tank filling rate
    скорость заправки топливных баков
    fuel tank support
    ложемент топливного бака
    fuel tank trailer
    топливозаправщик с цистерной
    fuel tank water drainage
    слив конденсата из топливных баков
    fuel the tank
    заправлять бак топливом
    fuel throughput charge
    сбор за заправку топливом
    fuel totalizer
    топливомер суммарного запаса топлива
    fuel trankage
    отбирать воздух
    fuel transfer
    перекачка
    fuel transfer pump
    насос перекачки топлива
    fuel trimming
    балансировка выработкой топлива
    fuel up
    заправлять топливом
    fuel uplift
    количество заправляемого топлива
    fuel usage system
    система выработки топлива
    (из баков) high-energy fuel
    высококалорийное топливо
    high-grade fuel
    высококачественное топливо
    high-octane fuel
    высокооктановое топливо
    high-pressure fuel system
    топливная система высокого давления
    high-speed fuel manifold
    топливный коллектор большого газа
    ignite fuel
    зажигать топливо
    igniter fuel nozzle
    пусковая форсунка воспламенителя
    improper fuel
    некондиционное топливо
    in computing the fuel
    при расчете количества топлива
    intentionally damped fuel
    преднамеренно слитое топливо
    introduce fuel
    подавать топливо
    jet fuel
    топливо для реактивных двигателей
    jettison fuel
    аварийно сливать топливо
    low-speed fuel manifold
    топливный коллектор малого газа
    main fuel
    основной запас топлива
    main fuel manifold
    основной топливный коллектор
    main fuel nozzle
    рабочая топливная форсунка
    minimize fuel consumption
    доводить расход топлива до минимума
    on-board fuel
    запас топлива на борту
    one-hour fuel reserve
    часовой запас топлива
    operate on fuel
    работать на топливе
    pressure fuel system
    система подачи топлива под давлением
    primary fuel nozzle
    форсунка первого контура подачи топлива
    primary fuel starting manifold
    первый топливный коллектор
    run out fuel
    полностью вырабатывать топливо
    run-up fuel
    топливо на опробование
    second fuel consumed tank
    бак второй очереди расхода топлива
    self-sealing fuel tank
    протектированный топливный бак
    sequence of fuel usage
    очередность выработки топлива
    (по группам баков) service fuel tank
    рабочий топливный бак
    shut off fuel
    перекрывать подачу топлива
    slipper fuel tank
    подвесной топливный бак
    specific fuel consumption
    удельный расход топлива
    started fuel valve
    клапан пускового топлива
    starting fuel
    пусковое топливо
    starting fuel control unit
    автомат подачи пускового топлива
    starting fuel nozzle
    форсунка пускового топлива
    takeoff fuel
    количество топлива, требуемое для взлета
    taxi fuel
    топливо, расходуемое при рулении
    test a fuel nozzle
    проливать топливную форсунку
    thrust specific fuel consumption
    удельный расход топлива на кг тяги в час
    total fuel indicator
    указатель суммарного запаса топлива
    transfer fuel
    перекачивать топливо
    trapped fuel
    несливаемый остаток топлива
    two-jet fuel nozzle
    двухсопловая топливная форсунка
    undrainable fuel reserve
    несливаемый запас топлива
    uneven use of fuel
    неравномерная выработка топлива
    unusable fuel
    невырабатываемый остаток топлива
    usable fuel
    расходуемое топливо
    use fuel
    расходовать топливо
    ventral fuel tank
    дополнительный топливный бак
    wide-cut fuel
    топливо широкой фракции
    wing fuel tank
    топливный крыльевой бак
    wing integral fuel tank
    топливный отсек крыла
    wingtip fuel tank
    топливный бак, устанавливаемый на конце крыла
    zero fuel mass
    масса без топлива
    zero fuel weight
    масса без топлива

    English-Russian aviation dictionary > fuel

  • 9 jockey pump

    1. насос сплинкерной системы пожаротушения

     

    насос сплинкерной системы пожаротушения
    жокей-насос

    -

    Принцип работы насосной установки спринклерной системы пожаротушения,  в  состав которой входит жокей-насос
    В случае падения давления воды в спринклерной системе, первым включается жокей-насос. Если расход воды небольшой и жокей-насос справляется с восполнением утечки, то через некоторое время после достижения верхнего предела заданного давления он выключится. Если же это не протечка, а открылось несколько спринклеров и расход воды значительный, то даже при работающем жокей-насосе давление продолжает падать. В этом случае, по сигналу второго реле давления, включается пожарный насос. Резервный агрегат включается в случае невыхода основного на рабочий режим. Независимо от того, потушен пожар или нет, пожарные насосы сами не отключаются, их можно выключить только вручную со шкафа управления.
    [ http://www.airweek.ru/pr_news_137.html]


    Jockey Pump

    A jockey pump is a small pump connected to a fire sprinkler system and is intended to maintain pressure in a fire protection piping system to an artificially high level so that the operation of a single fire sprinkler will cause an appreciable pressure drop which will be easily sensed by the fire pump automatic controller, causing the fire pump to start. The jockey pump is essentially a portion of the fire pump's control system.
    In the U.S.
    The application of a jockey pump in a fire protection system is covered by documents produced by the NFPA (National Fire Protection Association,) known as NFPA 20 "Fire Pumps" Standard and NFPA 13 "Design and Installation of Fire Sprinkler Systems". These must be inspected as with any other part of the system per NFPA 25 "Inspection and Testing of Water-Based Fire Protection Systems".Fire protection systems are governed in most states by statute, building code, and/or fire code.
    In India
    This jockey pump is also a must while designing the Fire Hydrants Pumps skid for Industrial installations.While the logic followed for the effective operation of the fire fighting pumps may depend upon or vary as per the regulations in a particular country, in India, the pump manufacturers like Mather-Platt with standard Fire Pumps generally adhere to the TAC guidelines (Tariff Advisory Committee guidelines).
    Although India's premier manufacturer Kirloskar Brothers Limited, with approvals from UL and FM Global, LPCB, ASIB: follows TAC guidelines (Tariff Advisory Committee guidelines), or FM GLobal and UL standards depending on the clients needs.
    If one is following the TAC guidelines, follow this approach

    *Once the complete fire fighting circuit is under pressure by operating the pumps for sufficient time provided all the fire hydrant valves (Single yard hydrants, Fire escape hydrants, etc)are closed, the main pump stops.
    *Due to some leakages somewhere in the fire fighting piping circuit, when there is a loss of system pressure which will be constantly monitored by the Pressure sensors in the circuit, the jockey pumps receives a signal to start from the automatic control panel, and will run to augment this loss of pressure by pumping more water into the circuit. Once the pressure is maintained as per the set point, it stops.
    *If any hydrant valve is opened due to some fire and water is consumed, then the jockey pump due to its small capacity compared to the main pumps (one running, one stand-by)in terms of volumetric capacity, the main pump will start and then the jockey immediately stops.This way jockey pump is important which senses the loss of pressure in the circuit first.

    [ http://en.wikipedia.org/wiki/Jockey_pump#Jockey_Pump]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > jockey pump

  • 10 air

    air n
    воздух
    adjustable air outlet
    регулируемый насадок индивидуальной вентиляции
    aerodrome air picture
    воздушная обстановка в зоне аэродрома
    Aerodromes, Air Routes and Ground Aids Section
    Секция аэродромов, воздушных трасс и наземных средств
    (ИКАО) African Air Tariff Conference
    Африканская конференция по авиационным тарифам
    aids to air navigation
    навигационные средства
    air agency
    авиационное агентство
    air agreement
    авиационное соглашение
    air alert warning
    сигнализация аварийной обстановки в полете
    air base
    база для обслуживания полетов
    air base group
    бригада наземного обслуживания
    air bearing
    воздушная опора
    air bearing gyroscope
    гироскоп с воздушной опорой осей
    air bill
    полетный лист
    air blast
    воздушная ударная волна
    air bleed
    отбор воздуха
    air bleed hole
    окно отбора воздуха
    air bleed port
    отверстие отбора воздуха
    air bleed system
    система отбора воздуха
    (от компрессора) air borne system
    бортовая система
    air bottle cart
    тележка с баллонами сжатого воздуха
    air brake system
    система воздушных тормозов
    air bridge
    телескопический трап
    air cargo
    груз для воздушной перевозки
    air carriage
    воздушная перевозка
    air carriage contract
    контракт на воздушную перевозку
    air carrier
    воздушный перевозчик
    air carrier tariff
    тарифная ставка, установленная авиаперевозчиком
    Air Carrier Tariffs Section
    Секция тарифов воздушных перевозчиков
    (ИКАО) air charging connection
    штуцер зарядки воздухом
    air charter carrier
    чартерный авиаперевозчик
    air circulation
    циркуляция воздуха
    air clutter
    помехи от авиационных средств связи
    air codes
    воздушный кодекс
    air collector
    воздушный коллектор
    air commerce
    авиационная коммерческая деятельность
    air communication
    воздушное сообщение
    air communication center
    центр обеспечения воздушной связи
    air communicator
    оператор авиационной связи
    air compass swinging
    списание девиации компаса в полете
    air conditioning
    кондиционирование воздуха
    air conditioning system
    система кондиционирования воздуха
    (в кабине воздушного судна) air conflict search
    исследование конфликтной ситуации в воздушном движении
    air control
    диспетчерское обслуживание воздушного пространства
    air conveyance
    воздушная перевозка
    air cooler
    воздушный радиатор
    air cooling
    воздушное охлаждение
    air cooling system
    система воздушного охлаждения
    air corridor
    воздушный коридор
    air crash
    авиационное происшествие
    air cushion
    воздушная подушка
    air cushion effect
    эффект воздушной подушки
    air damper
    пневматический амортизатор
    air data
    данные о результатах испытания в воздухе
    air data computer
    вычислитель воздушных сигналов
    air data computer system
    система сбора воздушных сигналов
    air deficiency
    недостаток воздуха
    air delivery pipe
    воздуховод
    air density
    плотность воздуха
    air diluter
    автомат подсоса воздуха
    air display
    экран изображения воздушной обстановки
    air distortion
    возмущение воздушного потока
    air distress communication
    аварийная связь с воздушным судном
    air drag
    сопротивление воздуха
    air eddy
    завихрение воздуха
    air entity
    авиационная организация
    air fare
    тариф на воздушную перевозку пассажира
    air feeder
    патрубок подвода воздуха
    air ferry route
    маршрут перегонки воздушных судов
    air filter
    воздушный фильтр
    air flap
    воздушная заслонка
    air fleet
    воздушный флот
    air flow
    воздушный поток
    air flow characteristic
    характеристика расхода воздуха
    air flow duct
    воздушный тракт
    air flow interaction
    взаимодействие воздушных потоков
    air flow mixer
    смеситель потоков воздуха
    air flow rate
    степень расхода воздуха
    air freight
    авиационный груз
    air freight bill
    грузовая авианакладная
    air freighter
    грузовое воздушное судно
    air freight forwarder
    агентство по отправке грузов воздушным транспортом
    air freight lift
    перевозка грузов по воздуху
    air freight terminal
    грузовой комплекс аэропорта
    air gate
    воздушные ворота
    air grill
    решетка для забора воздуха
    air gust
    порыв воздушной массы
    air heater
    обогреватель воздуха
    air humidifying system
    система увлажнения воздуха
    air induction system
    система забора воздуха
    air industry
    авиационная промышленность
    air inlet
    бортовой приемник статического давления
    air inlet duct
    входное устройство
    air inlet screen
    сетчатый фильтр воздухоприемника
    air inlet section
    входное воздушное устройство
    (двигателя) air intake
    воздухозаборник
    air intake blade
    заглушка воздухозаборника
    air intake diffuser
    диффузор воздухозаборника
    air intake duct
    канал воздухозаборника
    air intake duct heating
    обогрев канала воздухозаборника
    air intake fixed lip
    нерегулируемая кромка воздухозаборника
    air intake hazard area
    опасная зона перед воздухозаборником
    air intake heater
    обогреватель воздухозаборника
    air intake pressure
    давление на входе в воздухозаборник
    air intake spike
    конус воздухозаборника
    (двигателя) air intake spike control
    управление конусом воздухозаборником
    air intake surge
    помпаж в воздухозаборнике
    air intake throat
    минимальное проходное сечение воздухозаборника
    air intake wedge
    клин воздухозаборника
    air intrusion
    нарушение воздушного пространства
    air labyrinth seal ring
    кольцо воздушного лабиринтного уплотнения
    air lane
    воздушная трасса
    air law
    воздушное право
    Air laws regulations
    Воздушный кодекс
    air leg
    участок маршрута полета
    air legislation
    авиационное законодательство
    air line
    воздушная линия
    Air Line Pilot's
    Ассоциация пилотов гражданской авиации
    air lock
    воздушная пробка
    air loitering
    воздушное барражирование
    air mail
    воздушная почта
    air manifold
    воздушный коллектор
    air manifold pipe
    воздушный коллектор
    air marker
    аэронавигационный маркер
    air mass
    воздушная масса
    air medicine
    авиационная медицина
    air meter
    расходомер воздуха
    air miss
    сближение в полете
    air mixture control
    регулирование топливовоздушной смеси
    air movement
    воздушная перевозка
    air navigation
    аэронавигация
    air navigation agreement
    аэронавигационное соглашение
    Air Navigation Bureau
    Аэронавигационное управление
    air navigation charge
    аэронавигационный сбор
    air navigation chart
    аэронавигационная карта
    Air Navigation Commission
    Аэронавигационная комиссия
    Air Navigation Committee
    Аэронавигационный комитет
    air navigation computer
    аэронавигационный вычислитель
    Air Navigation Conference
    Аэронавигационная конференция
    air navigation facilities
    аэронавигационные средства
    air navigation plan
    аэронавигационный план
    air navigation protractor
    аэронавигационный транспортир
    air navigation region
    район аэронавигации
    air navigation school
    штурманская школа
    air navigation service
    аэронавигационное обслуживание
    air navigation table
    таблица аэронавигационных расчетов
    air navigator
    штурман
    air observation
    наблюдение за воздушным пространством
    air obstacle
    препятствие на пути полета
    air operation for hire
    воздушная перевозка по найму
    air operation for remuneration
    воздушная перевозка за плату
    Air Passenger Tariff
    сборник пассажирских тарифов на воздушную перевозку
    air path
    воздушная трасса
    air patrol zone
    зона воздушного барражирования
    air patter
    авиационная фразеология
    air pilotage
    самолетовождение
    air piracy
    воздушное пиратство
    air plan
    план развития воздушных перевозок
    air plot
    схема воздушной обстановки
    air pocket
    воздушная яма
    air pollution
    загрязнение атмосферы
    air position
    положение в воздушном пространстве
    air position indicator
    указатель местоположения в полете
    air pressure
    давление воздуха
    air pressure valve
    воздушный редуктор
    air pressurization system
    система наддува
    (кабины) air priority
    очередность полетов
    air refuelling
    дозаправка топливом в полете
    air release hose
    шланг для стравливания воздуха
    air report
    донесение с борта
    air rescue kit
    комплект аварийно-спасательного оборудования
    air rote limitations
    ограничения на воздушных трассах
    air route
    воздушная трасса
    air route chart
    маршрутная карта
    air route forecast
    прогноз по маршруту
    air route network
    сеть воздушных трасс
    air safety
    безопасность воздушного движения
    air safety rules
    инструкция по обеспечению безопасности полетов
    air seal
    воздушное уплотнение
    air search
    поиск с воздуха
    air service
    авиаперевозки
    air sextant
    авиационный секстант
    air show
    авиационная выставка
    air shuttle
    челночные авиаперевозки
    air side
    воздушная зона
    air situation
    воздушная обстановка
    air situation display
    дисплей индикации воздушной обстановки
    air sounding
    зондирование атмосферы
    air spacing
    распределение воздушного пространства
    (для обеспечения контроля полетов) air stability
    устойчивость воздушной массы
    air stairs
    авиационный трап
    air starter
    воздушный стартер
    air starting
    запуск в воздухе
    air starting system
    воздушная система запуска двигателей
    air strip
    ВПП
    air supremacy
    господство в воздухе
    air surveillance system
    система воздушного наблюдения
    air survey
    наблюдение с воздуха
    air target
    воздушная цель
    air target indication
    индикация воздушных целей
    air tariff clause
    статья об авиационных тарифах
    air taxi
    воздушное такси
    air taxiing
    руление по воздуху
    air ticket portion
    купон авиационного билета
    air tire
    пневматическая шина
    air track
    воздушная трасса
    air traffic
    воздушное движение
    air traffic audio simulation system
    аудиовизуальная система имитации воздушного движения
    (для тренажеров) air traffic control
    1. ответчик системы УВД
    2. управление воздушным движением Air Traffic Control Advisory Committee
    Консультативный комитет по управлению воздушным движением
    air traffic control area
    зона управления воздушным движением
    air traffic control boundary
    граница зоны управления воздушным движением
    air traffic control center
    диспетчерский центр управления воздушным движением
    air traffic control clearance
    разрешение службы управления воздушным движением
    air traffic controller
    диспетчер службы управления воздушным движением
    air traffic control loop
    цикл управления воздушным движением
    air traffic control procedures
    правила управления воздушным движением
    air traffic control radar
    радиолокатор управления воздушным движением
    air traffic control routing
    прокладка маршрута полета согласно указанию службы управления движением
    air traffic control service
    служба управления воздушным движением
    air traffic control system
    система управления воздушным движением
    air traffic control unit
    пункт управления воздушным движением
    air traffic convention
    конвенция по управлению воздушным движением
    air traffic density
    плотность воздушного движения
    air traffic environment
    условия выполнения воздушных перевозок
    air traffic flow management
    управление потоком воздушного движения
    air traffic guide
    наставление по управлению воздушным движением
    air traffic hub
    узловой район воздушного движения
    air traffic pattern
    схема воздушного движения
    air traffic performance
    объем воздушных перевозок
    air traffic procedures
    правила воздушного движения
    air traffic school
    школа подготовки специалистов по управлению воздушным движением
    air traffic service
    служба воздушного движения
    air traffic service chart
    схема обслуживания воздушного движения
    air traffic service route
    маршрут, обслуживаемый службой воздушного движения
    air traffic services expert
    эксперт по обслуживанию воздушного движения
    air traffic services procedures
    правила обслуживания воздушного движения
    air traffic services unit
    пункт обслуживания воздушного движения
    air transport
    воздушный транспорт
    air Transport
    Ассоциация воздушного транспорта США
    air transport agreement
    соглашение о воздушном сообщении
    Air Transportation Board
    Комитет по воздушным перевозкам
    Air Transport Bureau
    Авиатранспортное управление
    Air Transport Committee
    Комитет по воздушным перевозкам
    air transport enterprise
    авиатранспортное предприятие
    air transport facilitation
    уменьшение ограничений в воздушных перевозках
    air transport insurance
    страхование авиаперевозок
    air transport movement table
    график движения воздушного транспорта
    air transport operations
    авиатранспортные перевозки
    air transport pilot
    свидетельство пилота транспортной авиации
    air transport service
    авиаперевозки
    Air Transport Studies Section
    Секция исследования воздушного транспорта
    (ИКАО) air transport wing
    авиатранспортное подразделение
    air travel
    воздушное путешествие
    air travel card
    маршрутный лист воздушного путешествия
    air travel plan
    график воздушного путешествия
    air trial
    испытание в воздухе
    air trip
    воздушное путешествие
    air turbine
    воздушная турбина
    air turbulence
    воздушная турбулентность
    air unit
    авиационное подразделение
    air unworthiness
    непригодность к летной эксплуатации
    air valve
    воздушный клапан
    air velocity
    скорость движения воздушной массы
    air wave
    воздушная волна
    air waybill
    авиагрузовая накладная
    airways and air communications service
    служба воздушных сообщений
    alternate air route
    запасной маршрут полета
    ambient air
    окружающий воздух
    ambient air temperature
    температура окружающего воздуха
    annular air intake
    кольцевой воздухозаборник
    ascending air
    восходящий поток воздуха
    ball-type air outlet
    насадок шарового типа индивидуальной вентиляции
    bearing air seal
    воздушное уплотнение опоры
    bifurcated air bypass duct
    раздвоенный воздушный тракт
    bifurcated air intake
    воздухозаборник, раздвоенный на выходе
    bird strike to an air craft
    столкновение птиц с воздушным судном
    bleed air
    стравливать воздушную пробку
    bleed air receiver
    ресивер отбора воздуха
    bleed off air
    перепускать воздух
    boundary-layer air
    воздух в пограничном слое
    breather air
    воздух суфлирования
    bring to rest air
    затормаживать воздушный поток
    center of air pressure
    центр аэродинамического давления
    Central Agency of Air Service
    Главное агентство воздушных сообщений
    certificated air carrier
    зарегистрированный авиаперевозчик
    civil air operations
    полеты гражданских воздушных судов
    civil air regulations
    руководство по полетам воздушных судов гражданской авиации
    civil air transport
    гражданский воздушный транспорт
    clear air turbulence
    турбулентность в атмосфере без облаков
    cold air
    холодный фронт воздуха
    commercial air carrier
    коммерческий авиаперевозчик
    commercial air transport
    коммерческий воздушный транспорт
    commercial air transportation
    коммерческая воздушная перевозка
    commercial air transport operations
    коммерческие воздушные перевозки
    commuter air carrier
    авиаперевозчик на короткие расстояния
    compressor air flow duct
    второй контур
    compressor-bleed air
    воздух, отбираемый от компрессора
    conditioned air emergency valve
    аварийный клапан сброса давления в системе кондиционирования
    continuous air bleed
    постоянный отбор воздуха
    cooling air outlet tube
    патрубок отвода охлаждающего воздуха
    dead air
    невозмущенный воздух
    determine air in a system
    устанавливать наличие воздушной пробки в системе
    discharge air overboard
    отводить воздух в атмосферу
    dominant air mode
    основной режим воздушного пространства
    duct air temperature
    температура воздуха в трубопроводе
    earth air strip
    грунтовая ВПП
    effective air path
    действующая воздушная трасса
    enforce rules of the air
    обеспечивать соблюдение правил полетов
    engine air bleed flange
    фланец отбора воздуха от двигателя
    European Air carries Assembly
    Ассамблея европейских авиаперевозчиков
    European Air Navigation Planning Group
    Европейская группа аэронавигационного планирования
    first freedom of the air
    первая степень свободы воздуха
    fixed-geometry air intake
    нерегулируемый воздухозаборник
    fixed-lip air intake
    воздухозаборник с фиксированной передней кромкой
    flame tube air hole
    окно подвода воздуха к жаровой трубе
    flow of air traffic
    поток воздушного движения
    forced air cooling
    принудительное охлаждение
    freedom of the air
    степень свободы воздуха
    gain the air supremacy
    завоевывать господство в воздухе
    General Department of International Air Services of Aeroflot
    Центральное управление международных воздушных сообщений гражданской авиации
    generator air inlet
    воздухозаборник обдува генератора
    ground air starting unit
    аэродромная установка для запуска
    high density air traffic
    интенсивное воздушное движение
    identify the aerodrome from the air
    опознавать аэродром с воздуха
    indicate the location from the air
    определять местоположение с воздуха
    intermodal air carriage
    смешанная воздушная перевозка
    International Air Carrier
    Международная ассоциация авиаперевозчиков
    international air route
    международная авиационная трасса
    International Air Transport
    Международная ассоциация воздушного транспорта
    International commission for Air Navigation
    Международная комиссия по аэронавигации
    International Federation of Air Line Pilots' Associations
    Международная федерация ассоциаций линейных пилотов
    International Federation of Air Traffic Controllers' Associations
    Международная федерация ассоциаций авиадиспетчеров
    intersection of air routes
    пересечение воздушных трасс
    light air
    разреженный воздух
    long-range air navigation system
    система дальней радионавигации
    low air area
    нижнее воздушное пространство
    low air route
    маршрут нижнего воздушного пространства
    main air
    воздух, проходящий через первый контур
    maintenance-free air bearing
    износостойкий воздушный подшипник
    mass air flow
    массовый расход воздуха
    mid air collision control
    предупреждение столкновений в воздухе
    mixing air
    смесительный воздух
    multishock air intake
    многоскачковый воздухозаборник
    National Air Carrier
    Ассоциация воздушных перевозчиков
    normal air
    стандартная атмосфера
    nose air intake
    носовой воздухозаборник
    open air
    наружный воздух
    outside air temperature
    температура наружного воздуха
    outside air temperature indicator
    указатель температуры наружного воздуха
    overflow air traffic
    перегружать воздушное движение
    pipeline to air intake
    трубопровод подвода воздуха к воздухозаборнику
    practical air navigation
    практическая аэронавигация
    private air strip
    частная ВПП
    Procedures for Air Navigation Services
    Правила аэронавигационного обслуживания
    prognostic upper air chart
    карта прогнозов состояния верхних слоев атмосферы
    ram air
    заторможенный поток воздуха
    ram air assembly
    заборник воздуха для надува топливных баков от скоростного напора
    ram air cooling
    охлаждение набегающим потоком воздуха
    ram air temperature
    температура набегающего потока воздуха
    rarefied air
    разреженный воздух
    regional air navigation
    региональная аэронавигация
    regional air navigation meeting
    региональное аэронавигационное совещание
    (ИКАО) release air
    стравливать давление воздуха
    retractable air steps
    выдвижная бортовая лестница
    rough air
    воздух в турбулентном состоянии
    rough air mechanism
    механизм для создания условий полета в нестабильной атмосфере
    route air navigation facilities
    маршрутные аэронавигационные средства
    rules of the air
    правила полетов
    scheduled air service
    регулярные воздушные перевозки
    sealing air annulus
    кольцевой канал подвода воздуха к лабиринтному управления
    sealing air passage
    канал подвода воздуха к лабиринтному уплотнению
    second freedom of the air
    вторая степень свободы воздуха
    shipment by air
    транспортировка по воздуху
    stable air
    устойчивый воздушный поток
    standard air
    стандартная атмосфера
    static air temperature
    температура возмущенной воздушной массы
    still air
    нулевой ветер
    tactical air navigation
    тактическая аэронавигация
    tactical air navigation facilities
    тактические аэронавигационные средства
    tactical air navigation system
    система ближней аэронавигации
    tap air from the compressor
    отбирать воздух от компрессора
    throttle air
    воздушный дроссель
    through air service
    прямое воздушное сообщение
    time in the air
    налет часов
    total air temperature
    полная температура потока
    two-dimensional air intake
    двухмерный воздухозаборник
    two-shock air intake
    двухскачковый воздухозаборник
    undisturbed air
    невозмущенная атмосфера
    unifired air cargo tariff
    единая авиационная грузовая тарифная ставка
    unifired air passenger tariff
    единая авиационная пассажирская тарифная ставка
    universal air travel plan
    программа организации авиационных путешествий
    upper air
    верхнее воздушное пространство
    upper air area
    верхнее воздушное пространство
    upper air route
    маршрут верхнего воздушного пространства
    upper air temperature
    температура верхних слоев атмосферы
    variable lip air intake
    воздухозаборник с регулируемой передней кромкой
    vent air
    дренажировать
    vent air inlet
    воздухозаборник
    ventilating air outlet
    насадок индивидуальной вентиляции

    English-Russian aviation dictionary > air

  • 11 parameter

    1. характеристика
    2. рабочий параметр
    3. параметр объекта
    4. параметр модели
    5. параметр

     

    параметр
    Величина, характеризующая основные существенные особенности процессов или объектов
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    параметр
    -

    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • автоматизация, основные понятия

    EN

    DE

    FR

     

    параметр модели
    Относительно постоянный показатель, характеризующий моделируемую систему (элемент системы) или процесс. Параметры указывают, чем данная система (процесс) отлична от других. Поэтому, строго говоря, они могут быть не только количественными (т.е. показателями), но и качественными (например, некоторыми свойствами объекта, его названием и т.п.). В научной литературе распространено следующее определение: основные параметры системы — это такие ее характеристики, которые изменяются лишь тогда, когда меняется сама система, т.е. для данной системы — это константы. Однако оно не вполне точно. На самом деле параметры модели могут быть переменными величинами, изменяющимися относительно медленно; для упрощения расчетов они принимаются на какой-то не очень длительный период за постоянные. Иногда приходится включать в модель коэффициенты изменения параметров за изучаемый срок. Это усложняет расчеты по модели, зато дает более точные результаты. Термин «экономические параметры» употребляется и в более конкретном смысле как обозначение измеримых величин, которые характеризуют структуру народного хозяйства, его состояние, уровень экономического развития и сам процесс развития. В этом смысле экономическими параметрами можно назвать, например, уровень и темп роста национального дохода, соотношение темпов роста промышленности и сельского хозяйства, численность населения и т.д. Параметры составляют каркас каждой экономико-математической модели. Их выявляют путем статистического изучения экономической действительности. (См. Оценка параметров модели). Например, если изучается расход различных видов материалов в процессе производства, то параметрами будут нормы расхода, устанавливаемые на основе расчетов (технически обоснованные нормы) или же на основе изучения прошлого опыта (опытно-статистические нормы). Соответствующие величины (параметры) можно включить в модель для прогноза или плана производства на будущее. Параметры экономико-математических моделей подразделяются на два вида: а) описывающие поведение системы и б) управляющие, среди которых особенно важны инструментальные, и на три группы: а) параметры среды; б) параметры управляющих воздействий; в) параметры внутреннего состояния системы. С точки зрения экономической природы модели особое значение имеют технологические параметры (например, параметры производственной функции) и поведенческие параметры (характеризующие, например, реакцию работника на стимулирующее воздействие). Ряд авторов относит к П.м. неуправляемые переменные. И вообще, в литературе термины «П.м.» и «переменная модели» часто употребляются в приложении к одним и тем же величинам. Это зависит от постановки задачи, однако, нередко и от нечеткости разграничения самих этих понятий.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    параметр объекта
    Величина, характеризующая свойство объекта, значения которой определяются по количественной шкале.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    рабочий параметр
    эксплуатационный параметр


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    характеристика
    Отличительное свойство.
    Примечания
    1. Характеристика может быть присущей или присвоенной.
    2. Характеристика может быть качественной или количественной.
    3. Существуют различные классы характеристик, такие как:
    - физические (например, механические, электрические, химические или биологические характеристики);
    - органолептические (например, связанные с запахом, осязанием, вкусом, зрением, слухом);
    - этические (например, вежливость, честность, правдивость);
    - временные(например, пунктуальность, безотказность, доступность);
    - эргономические(например, физиологические характеристики или связанные с безопасностью человека);
    - функциональные(например, максимальная скорость самолета).
    [ ГОСТ Р ИСО 9000-2008]

    характеристика

    -
    [IEV number 151-15-34]

    EN

    characteristic
    relationship between two or more variable quantities describing the performance of a device under given conditions
    [IEV number 151-15-34]

    FR

    (fonction) caractéristique, f
    relation entre deux ou plusieurs variables décrivant le fonctionnement d'un dispositif dans des conditions spécifiées
    [IEV number 151-15-34]

    Тематики

    EN

    DE

    FR

    • (fonction) caractéristique, f

    Англо-русский словарь нормативно-технической терминологии > parameter

  • 12 Steuerung

    управление; аппаратура (система, привод) управления

    - Steuerung, aerodynamische аэродинамическое управление

    - Steuerung, außenatmosphärische управление (при полете) вне атмосферы

    - Steuerung, äußere внешнее управление

    - Steuerung, automatische автоматическое управление

    - Steuerung, azimutale управление по азимуту

    - Steuerung des Anstellwinkels ав, ( ракетная техника) управление углом атаки, управление по тангажу

    - Steuerung, digitale цифровое управление

    - Steuerung, direkte прямое (непосредственное) управление

    - Steuerung, drahtlose управление по ( радиотехника)

    - Steuerung, duale двойное управление

    - Steuerung, elektrische электрическое управление

    - Steuerung, elektronische электронное управление

    - Steuerung, handmechanische бустерное управление, бустерная система управления

    - Steuerung, hydraulische гидроуправление, управление с помощью гидравлического привода

    - Steuerung, inertiale инерциальное управление

    - Steuerung, kontinuierliche непрерывное управление

    - Steuerung, lageabhängige управление по положению

    - Steuerung, leitungsgebundene (теле) управление по проводной линии

    - Steuerung, logische логическое (программное) управление

    - Steuerung, manuelle ручное управление

    - Steuerung mit Hilfe astronomischer Ortung управление с использованием системы астронавигации

    - Steuerung mit Motor ( морское дело) симпатическое управление

    - Steuerung, optimale оптимальное управление

    - Steuerung, personelle решение кадровых вопросов

    - Steuerung, selbsthemmende необратимое бустерное управление, система необратимого бустерного управления

    - Steuerung, selbsttätige автоматическое управление

    - Steuerung, speicherprogrammierte управление с запоминаемой программой

    - Steuerung, starre жесткое управление

    - Steuerung, stetige непрерывное управление, управление непрерывного действия

    - Steuerung, sympatische управление следящего действия

    - Steuerung, unstetige дискретное (прерывистое) управление

    - Steuerung, verbrauchsoptimale управление, обеспечивающее оптимальный расход (топлива)

    - Steuerung, wegabhängige управление в функции пути

    - Steuerung, zeitabhängige управление в функции времени

    - Steuerung, zentralisierte централизованное управление

    - Steuerung, zielsuchende самонаведение

    Deutsch-Russisches militärwörterbuch > Steuerung

  • 13 Steuerung

    (f)
    управление; аппаратура (система, привод) управления

    Steuerung, aerodynamische — аэродинамическое управление

    Steuerung, außenatmosphärische — управление ( при полете) вне атмосферы

    Steuerung, äußere — внешнее управление

    Steuerung, automatische — автоматическое управление

    Steuerung, azimutale — управление по азимуту

    Steuerung des Anstellwinkelsав., ркт. управление углом атаки, управление по тангажу

    Steuerung, digitale — цифровое управление

    Steuerung, direkte — прямое ( непосредственное) управление

    Steuerung, drahtlose — управление по радио

    Steuerung, duale — двойное управление

    Steuerung, elektrische — электрическое управление

    Steuerung, elektronische — электронное управление

    Steuerung, handmechanische — бустерное управление, бустерная система управления

    Steuerung, hydraulische — гидроуправление, управление с помощью гидравлического привода

    Steuerung, inertiale — инерциальное управление

    Steuerung, kontinuierliche — непрерывное управление

    Steuerung, lageabhängige — управление по положению

    Steuerung, leitungsgebundene — ( теле) управление по проводной линии

    Steuerung, logische — логическое ( программное) управление

    Steuerung, manuelle — ручное управление

    Steuerung mit Motorмор. симпатическое управление

    Steuerung, optimale — оптимальное управление

    Steuerung, personelle — решение кадровых вопросов

    Steuerung, selbsthemmende — необратимое бустерное управление, система необратимого бустерного управления

    Steuerung, selbsttätige — автоматическое управление

    Steuerung, speicherprogrammierte — управление с запоминаемой программой

    Steuerung, starre — жесткое управление

    Steuerung, stetige — непрерывное управление, управление непрерывного действия

    Steuerung, sympatische — управление следящего действия

    Steuerung, unstetige — дискретное ( прерывистое) управление

    Steuerung, verbrauchsoptimale — управление, обеспечивающее оптимальный расход ( топлива)

    Steuerung, wegabhängige — управление в функции пути

    Steuerung, zeitabhängige — управление в функции времени

    Steuerung, zentralisierte — централизованное управление

    Steuerung, zielsuchende — самонаведение

    Deutsch-Russische Militär Wörterbuch > Steuerung

  • 14 demand

    [dɪ'mɑːnd]
    1) Общая лексика: вытребовать, задавать вопрос, запрос, команда, настойчивая просьба, настоятельно просить, нуждаться, потребляемое количество (энергии, топлива), потребность, потребовать, предлагать, предъявлять требование, просьба, спрашивать, спрос (на товары), спросить, требование, требовать (с кого-либо, от кого-либо), востребование
    2) Компьютерная техника: потребность в обслуживании
    3) Авиация: команда (запрос)
    4) Медицина: необходимость
    5) Военный термин: истребовать
    8) Железнодорожный термин: максимум нагрузки, потребность (о мощности)
    10) Экономика: до востребования
    12) Телекоммуникации: потребление электроэнергии
    13) Электроника: нагрузка
    14) Вычислительная техника: выполняемый по запросу, запрашивать
    18) Нефтегазовая техника нормативное потребление
    19) юр.Н.П. предлагать (administrative law), предложение (administrative law), предложить (administrative law)
    21) Мелиорация: потребности в воде
    22) Безопасность: вымогательство
    23) Нефть и газ: потребности
    24) Электротехника: электропотребление

    Универсальный англо-русский словарь > demand

  • 15 air outlet

    1. штуцер воздушной магистрали
    2. воздухораспределитель
    3. воздуховыпускное отверстие

     

    воздуховыпускное отверстие

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    штуцер воздушной магистрали

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > air outlet

  • 16 air diffuser

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air diffuser

  • 17 air dispenser

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air dispenser

  • 18 air distributor

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air distributor

  • 19 air terminal device

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air terminal device

  • 20 air terminal unit

    1. воздухораспределитель

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > air terminal unit

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»